Synthesis and structure of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$, the first oxothioborate*

A. Hammerschmidt and B. Krebs
Anorganisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 8, D-4400 Münster (FRG)

(Received August 2, 1991; accepted August 19, 1991)

Abstract

$\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ was prepared from the reaction of sodium sulphide with boron oxide and sodium carbonate at $500^{\circ} \mathrm{C}$ in a graphitized silica tube. It is the first oxothioborate that could be synthesized and characterized by single-crystal X-ray diffraction. $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ crystallizes in the monoclinic space group $P 2_{1} / c$ with $a=11.390(2) \AA, b=6.249(1) \AA$, $c=10.934(2) \AA$ and $\beta=93.94(2)^{\circ}$. In the structure, polymeric $\left[\mathrm{B}_{5} \mathrm{O}_{8} \mathrm{~S}^{3-}\right]_{n}$ anions form two-dimensionally infinite layers containing groups of two spirocyclically connected sixmembered $\mathrm{B}_{3} \mathrm{O}_{3}$ rings with one exocyclic sulphur atom bonded to one of them. Two of the five boron atoms are in tetrahedral BO_{4} coordination ($\mathrm{B}-\mathrm{O}=1.433-1.504 \AA$) and three have trigonal planar BO_{3} or $\mathrm{BO}_{2} \mathrm{~S}$ coordination ($\mathrm{B}-\mathrm{O}=1.353-1.393 \AA, \mathrm{~B}-\mathrm{S}=1.813$ \AA). The three types of sodium cations between the layers are coordinated by $7 \mathrm{O}, 4 \mathrm{~S}+2 \mathrm{O}$ and $1 S+60$ atoms.

1. Introduction

In recent years considerable progress has been observed in the chemistry and structural chemistry of binary and ternary boron sulphides and selenides. This was made possible by the development and improvement of current methods of synthesis and crystallization. Besides the binary compounds $\mathrm{B}_{2} \mathrm{~S}_{3}$ [1-6], $\left(\mathrm{BS}_{2}\right)_{n}$ and $\left(\mathrm{BSe}_{2}\right)_{n}[1,7,8]$ and the porphin-like $\mathrm{B}_{8} \mathrm{~S}_{16}$ [1, 7-9], numerous thioborates were synthesized and their structures determined (Table 1). Boron chalcogenides show a great structural variety. $\mathrm{B}-\mathrm{O}$ and $\mathrm{B}-\mathrm{S}$ compounds both contain trigonally and tetrahedrally coordinated boron, but the constitution of polymeric anions is different. In contrast to edge-sharing BS_{4} tetrahedra forming $\mathrm{B}_{2} \mathrm{~S}_{2}$ four-membered rings, no edge-sharing BO_{4} tetrahedra have been observed so far. A novel connecting link between $\mathrm{B}-\mathrm{O}$ and B-S chemistry is represented by the compound $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$.

2. Sample preparation and properties

The synthesis of well-defined and highly pure binary, ternary and quarternary boron sulphides is rather difficult because of the high reactivity of

[^0]TABLE 1
Thioborates with known structures ${ }^{\text {a }}$

$\mathrm{M}_{m} \mathrm{~S}_{s} / \mathrm{B}_{2} \mathrm{~S}_{3}$ $\mathrm{M}^{\mathrm{I}}: m=2, s=1$ $\mathrm{M}^{\mathrm{II}}: m=1, s=1$	Compound(s)	Reference(s)	Coordination of boron
$3: 1$		$[10]$	Trigonal
$2: 1$	$\mathrm{Tl}_{3} \mathrm{BS}_{3}$	$[11]$	Trigonal
$1: 1$	$\mathrm{Sr}_{3}\left[\mathrm{BS}_{3}\right]_{2}$	$[1,12-14]$	Tetrahedral
	$\mathrm{Pb}_{4} \mathrm{~B}_{4} \mathrm{~S}_{10}$	$[1,15-17]$	Trigonal
	$\mathrm{Na}_{3} \mathrm{~B}_{3} \mathrm{~S}_{6}$	$[1,15-17]$	Trigonal
	$\mathrm{K}_{3} \mathrm{~B}_{3} \mathrm{~S}_{6}$	$[18]$	Trigonal
	$\mathrm{Rb}_{3} \mathrm{~B}_{3} \mathrm{~S}_{6}$	$[18]$	Trigonal
	$\mathrm{LiSrB}_{3} \mathrm{~S}_{6}$	$[19-21]$	Tetrahedral
$5: 7$	TBS_{2}	$[21,22]$	Tetrahedral
$3: 5$	$\mathrm{SrB}_{2} \mathrm{~S}_{4}$	$[12]$	Tetrahedral
	$\mathrm{Li}_{5} \mathrm{~B}_{7} \mathrm{~S}_{13}$	$[16]$	Tetrahedral
	$\mathrm{AB}_{8} \mathrm{~B}_{10} \mathrm{~S}_{18}$	Tetrahedral	

${ }^{\text {a }}$ The first perthioborate with a known structure is TlBS $_{3}[19,20]$.
boron sulphides towards most of the usual container materials. The silica tubes usually employed are attacked by boron sulphides above $300-400{ }^{\circ} \mathrm{C}$, $\mathrm{Si}-\mathrm{S}$ compounds being formed by complete $\mathrm{B}-\mathrm{Si}$ exchange. Pure samples can be obtained from protected silica tubes. The inner walls of the quartz glass crucible are coated with a tight layer of glassy carbon by anaerobic pyrolysis of acetone vapour at about $1000^{\circ} \mathrm{C}$.

In order to improve crystallization, the samples are annealed in pressed carbon or boron nitride (BN) crucibles (length 100 mm , cap/outer/inner diameter $18 / 12 / 5 \mathrm{~mm}$) furnished with a tight screw cap. For the high temperature experiment they are inserted into a coated silica tube or into a steel or tantalum tube sealed by welding under an inert gas atmosphere. The inner walls of the outer metal container must be coated by a layer of BN produced by spraying a suspension of BN in $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Union Carbide) onto the inner walls with subsequent polishing.
$\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ was prepared from a mixture of anhydrous $\mathrm{Na}_{2} \mathrm{~S}$ (Alfa Ventron 97.5%), anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (Merck 99.5\%) and $\mathrm{B}_{2} \mathrm{O}_{3}$ (Merck 99.8\%, heated at $160{ }^{\circ} \mathrm{C}$ and 10^{-5} bar for 2 days). The mixture (ratio $2 \mathrm{Na}_{2} \mathrm{~S}+5 \mathrm{~B}_{2} \mathrm{O}_{3}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow 2 \mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}+\mathrm{CO}_{2}$) was heated with an excess of $\mathrm{B}_{2} \mathrm{~S}_{3}$ in a sealed silica tube to $500^{\circ} \mathrm{C}$ within 3 h , kept at this temperature for 14 h and then cooled to room temperature. To prepare single crystals, the sample was sealed in a steel crucible and heated for 14 days at 380 ${ }^{\circ} \mathrm{C}$. Colourless, moisture-sensitive crystals were obtained besides some glassy $\mathrm{B}_{2} \mathrm{~S}_{3}$.

3. Structure determination and refinement

For intensity collection, single crystals of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ were sealed under dry nitrogen into Mark capillaries. The crystal structure of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ was determined from single-crystal X-ray diffraction data collected on a SYNTEX $\mathrm{P} 2_{1}$ four-circle diffractometer at 150 K . The unit cell constants were refined by least-squares refinement from diffractometer coordinates of 18 medium angle reflections. The space group $P 2_{1} / c$ was obtained from systematic extinctions and from intensity statistics. The structure was solved by direct statistical methods of phase determination using the SHELXTL PLUS program system on a DEC VAX cluster. The refinement with anisotropic thermal parameters for all atoms with the exception of one oxygen atom (O(6)) converged to a conventional R value of 0.053 . Table 2 shows crystal data and details of data collection and structure refinement of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$. Table 3 presents atomic coordinates as well as isotropic thermal parameters of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$.

TABLE 2
Crystal data and details of data collection and structure refinement of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$

Formula	$\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$
Crystal dimensions	$0.05 \times 0.12 \times 0.10 \mathrm{~mm}^{3}$
Formula weight	$283.10 \mathrm{~g} \mathrm{~mol}^{-1}$
Crystal system	Monoclinic
Space group	$P 2_{1} / c$ (no. 14)
Unit cell constants	$a=11.390$ (2) \AA
	$b=6.249(1) \AA$
	$c=10.934(2) \AA$
	$\beta=93.94(2)^{\circ}$
Volume	776.4(1) \AA^{3}
Z	4
Density (calculated)	$2.422 \mathrm{~g} \mathrm{~cm}^{-3}$
Temperature of measurement	150 K
Radiation	Mo $\mathrm{K} \alpha(\lambda=0.71069 \AA$)
Monochromator	Graphite (parallel)
Scan mode	$\theta-2 \theta$
Scan range	$4^{\circ}<2 \theta<54^{\circ}$
Scan speed in 2θ	$2.60-29.30 \mathrm{deg} \mathrm{min}^{-1}$
Absorption coefficient	$0.58 \mathrm{~mm}^{-1}$
Reflections observed	1940
Independent reflections	1770
Reflections with $I>1.96 \sigma(I)$	1350
Number of variables	154
Weighting factor	$g=0.0001$
$\begin{aligned} & 1 / w=\sigma^{2}\left(F_{h k c}\right)+g\left\|F_{\mathrm{hk}}\right\|^{2} \\ & \text { with } \sigma\left(F_{h k l}\right)=\sigma(I) /\left(2\left\|F_{h k l}\right\| L P\right) \end{aligned}$	
R values	$R=0.053, R_{w}=0.052$
$\begin{aligned} & R=\left(\Sigma\| \| F_{0}\left\|-\left\|F_{\mathrm{c}}\right\|\right\|\right) / \Sigma\left\|F_{0}\right\| \\ & R_{w}=\left[\Sigma w\left(\left\|F_{0}\right\|-\left\|F_{\mathrm{c}}\right\|\right)^{2} / \Sigma w F_{0}^{2}\right]^{1 / 2} \\ & \hline \end{aligned}$	

TABLE 3
Atomic coordinates and isotropic thermal parameters $\left(\AA^{2}\right)$ for $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ with standard deviations

Atom	x	y	\boldsymbol{z}	$U_{\mathrm{eq}}^{\mathrm{a}}$
$\mathrm{S}(1)$	$0.01046(9)$	$0.25479(18)$	$0.36483(9)$	$0.0098(3)$
$\mathrm{Na}(1)$	$0.47377(15)$	$-0.19238(26)$	$-0.30279(15)$	$0.0118(5)$
$\mathrm{Na}(2)$	$-0.02161(16)$	$0.21732(28)$	$0.10869(15)$	$0.0158(6)$
$\mathrm{Na}(3)$	$-0.21183(17)$	$0.0777(3)$	$0.35344(18)$	$0.0190(6)$
$\mathrm{O}(1)$	$0.1864(3)$	$0.1804(5)$	$0.2095(3)$	$0.0077(9)$
$\mathrm{O}(2)$	$0.3805(3)$	$0.5527(4)$	$-0.0108(3)$	$0.0081(9)$
$\mathrm{O}(3)$	$0.3820(3)$	$0.1826(4)$	$-0.0659(3)$	$0.0084(9)$
$\mathrm{O}(4)$	$0.3635(3)$	$-0.0235(4)$	$0.2669(3)$	$0.0077(9)$
$\mathrm{O}(5)$	$0.2784(3)$	$-0.0454(4)$	$0.0636(3)$	$0.0092(9)$
$\mathrm{O}(6)$	$0.3208(3)$	$-0.1512(4)$	$-0.1403(3)$	$0.0078(9)$
$\mathrm{O}(7)$	$0.3693(3)$	$0.2897(4)$	$0.1409(2)$	$0.0080(9)$
$\mathrm{O}(8)$	$0.1906(3)$	$-0.0461(5)$	$0.3853(3)$	$0.0086(9)$
$\mathrm{B}(1)$	$0.3796(4)$	$0.3420(8)$	$0.0224(5)$	$0.0083(16)$
$\mathrm{B}(2)$	$0.1405(4)$	$0.1181(8)$	$0.3174(4)$	$0.0080(17)$
$\mathrm{B}(3)$	$0.3258(4)$	$-0.0105(8)$	$-0.0449(4)$	$0.0075(16)$
$\mathrm{B}(4)$	$0.3130(5)$	$-0.1143(7)$	$0.3733(5)$	$0.0080(17)$
$\mathrm{B}(5)$	$0.2990(4)$	$0.0952(7)$	$0.1724(5)$	$0.0084(17)$

${ }^{2} U_{\text {eq }}$ is defined as one-third of the trace of the orthogonalized $U_{i j}$ matrix.
Further details of the crystal structure determination (anisotropic temperature factor coefficients, structure factor tables) are available from the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-Technische Zusammenarbeit m.b.H., D-7514 Eggenstein-Leopoldshafen 2, F.Ŗ.G. on quoting the depository number CSD-55591, the names of the authors and the journal citation.

4. Description of the structure

$\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ crystallizes in the monoclinic space group $P 2_{1} / c .\left[\mathrm{B}_{5} \mathrm{O}_{8} \mathrm{~S}^{3-}\right]_{n}$ anions build up a two-dimensional network parallel to the (100) plane. The polymeric $\left[\mathrm{B}_{5} \mathrm{O}_{8} \mathrm{~S}^{3-}\right]_{n}$ anion contains subunits of two spirocyclically linked six-membered $\mathrm{B}_{3} \mathrm{O}_{3}$ rings with an exocyclic sulphur atom in one ring (Fig. 1). Additional oxygen atoms connect the bicyclic subunits to a layer system of composition $\left[\mathrm{B}_{5} \mathrm{O}_{8} \mathrm{~S}^{3-}\right]_{n}$ (Figs. 2 and 3), which leads to a distorted octahedral or sevenfold coordination of the sodium cations located between the layers. Two of the boron atoms are in tetrahedral BO_{4} coordination; the three others are trigonal planar with BO_{3} or $\mathrm{BO}_{2} \mathrm{~S}$ coordination. The sulphur atoms are located on a straight line parallel to the c axis with $a \approx 0$.

The coordination spheres of the three sodium cations in the asymmetric unit differ in number and kind of chalcogen atoms. The first sodium cation is coordinated by 70 , the second by $60+1 \mathrm{~S}$ and the third by $40+2 \mathrm{~S}$ atoms (Fig. 4). In Table 4 the $\mathrm{Na}-\mathrm{O}$ and $\mathrm{Na}-\mathrm{S}$ distances are listed. The interactions between the sodium cations and the chalcogen atoms are largely ionic, with

Fig. 1. $\left[\mathrm{B}_{5} \mathrm{O}_{6} \mathrm{O}_{4 / 2} \mathrm{~S}\right]^{3-}$ units in $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$.

Fig. 2. Perspective view of the $\left[\mathrm{B}_{5} \mathrm{O}_{8} \mathrm{~S}^{3-}\right]_{n}$ anions of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ along [010].
the $\mathrm{Na}-\mathrm{O}(\mathrm{Na}-\mathrm{S})$ distances being close to the sum of the ionic radii of Na^{+} and $\mathrm{O}^{2-}\left(\mathrm{S}^{2-}\right): d\left(\mathrm{Na}^{+}-\mathrm{O}^{2-}\right)=2.42 \AA$ and $d\left(\mathrm{Na}^{+}-\mathrm{S}^{2-}\right)=3.14 \AA[24,25]$.

Tables 5 and 6 show the bond lengths and bond angles in the polymeric anions. The trigonal (tetrahedral) $\mathrm{B}-\mathrm{O}$ bond lengths vary from 1.353(6) to $1.393(5) \AA(1.433(5)$ to $1.504(5) \AA)$; the $\mathrm{B}-\mathrm{S}$ bond length are $1.813(5) \AA$. The B-O values are in good accordance with numerous data in other borates as well as with the standard Shannon and Prewitt [24] values after consideration of covalent bonding and hybridization of the boron atoms $(d(\mathrm{~B}-\mathrm{O})=1.38 \AA$ for trigonally planar coordinated boron and $1.48 \AA$ for tetrahedrally coordinated boron). The theoretical B-S single-bond distance for trigonal planar coordination can be estimated to be about $1.85 \AA$. The $\mathrm{B}-\mathrm{S}$ distance observed in $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ is remarkably shorter, implying significant partial $\mathrm{p} \pi$ bonding. Very similar observations are made in the thioborates studied so far (Table 1), where similarly short B-S distances are observed in trigonal planar BS_{3} groups; they invariantly indicate significant $\mathrm{p} \pi-\mathrm{p} \pi$ overlap in the $\mathrm{B}-\mathrm{S}$ bonds.

Fig. 3. Projection of the unit cell of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ along [100].

Fig. 4. Coordination of the sodium cations in $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$.

The $\mathrm{O}-\mathrm{B}-\mathrm{O}$ and $\mathrm{B}-\mathrm{O}-\mathrm{B}$ bond angles (Table 6) within the six-membered rings differ rather strongly from 120° (from $115.2(1)^{\circ}$ to $\left.124.8(1)^{\circ}\right)$ and the angles at the tetrahedral boron atoms vary in a wide range from $97.8(1)^{\circ}$ to $113.6(1)^{\circ}$, but as with the distances, the angle distortions are similar to

TABLE 4
$\mathrm{Na}-\mathrm{O}$ and $\mathrm{Na}-\mathrm{S}$ distances (\AA) for $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ with standard deviations

$\mathrm{Na}(1 f)-\mathrm{O}(2 c)$	$2.594(3)$	$\mathrm{Na}(3)-\mathrm{S}(1)$	$2.760(2)$	
$\mathrm{Na}(1 f)-\mathrm{O}(3 g)$	$2.386(3)$	$\mathrm{Na}(3)-\mathrm{O}(1 c)$	$2.598(3)$	
$\mathrm{Na}(1 f)-\mathrm{O}(4 h)$	$2.301(3)$	$\mathrm{Na}(3)-\mathrm{O}(2 c)$	$2.666(3)$	
$\mathrm{Na}(1 f)-\mathrm{O}(4 d)$	$2.335(3)$	$\mathrm{Na}(3)-\mathrm{O}(5 d)$	$2.653(3)$	
$\mathrm{Na}(1 f)-\mathrm{O}(6 f)$	$2.588(3)$	$\mathrm{Na}(3)-\mathrm{O}(6 f)$	$2.606(3)$	
$\mathrm{Na}(1 f)-\mathrm{O}(7 h)$	$2.500(3)$	$\mathrm{Na}(3)-\mathrm{O}(7 c)$	$2.547(3)$	
$\mathrm{Na}(1 f)-\mathrm{O}(7 c)$	$2.833(3)$	$\mathrm{Na}(3)-\mathrm{O}(8 i)$	$2.856(4)$	
$\mathrm{Na}(2)-\mathrm{O}(1)$	$2.552(3)$	c	$-x$	$-\frac{1}{2}+y$
$\mathrm{Na}(2)-\mathrm{O}(8 d)$	$2.432(3)$	d	$-x$	$\frac{1}{2}+y$
$\mathrm{Na}(2)-\mathrm{S}(1)$	$2.808(2)$	e	x	$\frac{1}{2}-z$
$\mathrm{Na}(2)-\mathrm{S}(1 c)$	$2.907(2)$	f	$-x$	$-y$
$\mathrm{Na}(2)-\mathrm{S}(1 d)$	$3.372(2)$	g	$-1+x$	$-y$
$\mathrm{Na}(2)-\mathrm{S}(1 e)$	$2.723(2)$	h	$-1+x$	$\frac{1}{2}-y$
		i	$-x$	y

TABLE 5
$\mathrm{B}-\mathrm{O}$ and $\mathrm{B}-\mathrm{S}$ bond lengths (\AA) for $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ with standard deviations

$\mathrm{B}(1)-\mathrm{O}(2)$	$1.360(5)$	$\mathrm{B}(4)-\mathrm{O}(2 a)$	$1.492(5)$
$\mathrm{B}(1)-\mathrm{O}(3)$	$1.392(5)$	$\mathrm{B}(4)-\mathrm{O}(4)$	$1.443(6)$
$\mathrm{B}(1)-\mathrm{O}(7)$	$1.353(6)$	$\mathrm{B}(4)-\mathrm{O}(6 b)$	$1.475(5)$
		$\mathrm{B}(4)-\mathrm{O}(8)$	$1.476(6)$
$\mathrm{B}(2)-\mathrm{S}(1)$	$1.813(5)$	$\mathrm{B}(5)-\mathrm{O}(1)$	$1.472(6)$
$\mathrm{B}(2)-\mathrm{O}(1)$	$1.382(6)$	$\mathrm{B}(5)-\mathrm{O}(4)$	$1.437(5)$
$\mathrm{B}(2)-\mathrm{O}(8)$	$1.369(5)$	$\mathrm{B}(5)-\mathrm{O}(5)$	$1.486(5)$
		$\mathrm{B}(5)-\mathrm{O}(7)$	$1.504(5)$
$\mathrm{B}(3)-\mathrm{O}(3)$	$1.393(5)$	a	x

those in other known sterically constrained borates and thioborates with trigonally planar and tetrahedrally coordinated boron.

The anion structure in crystals of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ is similar to that of oxoborates containing the pentaborate anion. Exchange of the sulphur to an oxygen atom leads to a hypothetic $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{9}$. Although this prototype has not been synthesized yet, a related derivative is realized in $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ [26]. In the crystal structure of this pentaborate the position of the sulphur atom in $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ is replaced by two hydroxyl groups (Fig. 5). $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ crystallizes in the orthorhombic space group $P b c a$, the polymeric anions running parallel to the (010) plane. The coordination of the sodium cations is somewhat different from that in $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$. Similar pentaborate anions exist in the minerals $\mathrm{NaCa}\left[\mathrm{B}_{5} \mathrm{O}_{6}(\mathrm{OH})_{6}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (Ulexit) [27, 28], $\mathrm{NaCa}\left[\mathrm{B}_{5} \mathrm{O}_{7}(\mathrm{OH})_{4}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$ (Probertit) [29, 30], $\mathrm{Na}_{2} \mathrm{Ca}_{3} \mathrm{Cl}\left(\mathrm{SO}_{4}\right)_{2}\left[\mathrm{~B}_{5} \mathrm{O}_{8}(\mathrm{OH})_{2}\right]$ (Heidornit) [31] and $\mathrm{NaBa}_{3}\left[\mathrm{Si}_{2} \mathrm{~B}_{7} \mathrm{O}_{16}(\mathrm{OH})_{4}\right]$ (Garrelsit) [32].

TABLE 6
$\mathrm{O}-\mathrm{B}-\mathrm{O}, \mathrm{O}-\mathrm{B}-\mathrm{S}$ and $\mathrm{B}-\mathrm{O}-\mathrm{B}$ bond angles (deg) for $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ with standard deviations

$\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{O}(7)$	$119.4(1)$	$\mathrm{O}(2 a)-\mathrm{B}(4)-\mathrm{O}(6 b)$	$108.2(1)$
$\mathrm{O}(2)-\mathrm{B}(1)-\mathrm{O}(3)$	$120.6(1)$	$\mathrm{O}(2 a)-\mathrm{B}(4)-\mathrm{O}(8)$	$106.3(1)$
$\mathrm{O}(3)-\mathrm{B}(1)-\mathrm{O}(7)$	$119.8(1)$	$\mathrm{O}(4)-\mathrm{B}(4)-\mathrm{O}(6 b)$ $\mathrm{O}(4)-\mathrm{B}(4)-\mathrm{O}(8)$ $\mathrm{O}(1)-\mathrm{B}(2)-\mathrm{S}(1)$	$118.5(1)$
$\mathrm{O}(1)-\mathrm{B}(2)-\mathrm{O}(8)$	$120.3(1)$	$\mathrm{O}(2 a)-\mathrm{B}(4)-\mathrm{O}(4)$	$106.7(1)$
$\mathrm{O}(8)-\mathrm{B}(2)-\mathrm{S}(1)$	$121.2(1)$	$\mathrm{O}(6 b)-\mathrm{B}(4)-\mathrm{O}(8)$	$111.8(1)$
			$111.0(1)$
$\mathrm{O}(5)-\mathrm{B}(3)-\mathrm{O}(6)$	$124.8(1)$	$\mathrm{O}(1)-\mathrm{B}(5)-\mathrm{O}(4)$	
$\mathrm{O}(3)-\mathrm{B}(3)-\mathrm{O}(5)$	$120.0(1)$	$\mathrm{O}(1)-\mathrm{B}(5)-\mathrm{O}(7)$	$113.6(1)$
$\mathrm{O}(3)-\mathrm{B}(3)-\mathrm{O}(6)$	$115.2(1)$	$\mathrm{O}(5)-\mathrm{B}(5)-\mathrm{O}(7)$	$105.1(1)$
		$\mathrm{O}(5)-\mathrm{B}(5)-\mathrm{O}(4)$	$110.6(1)$
$\mathrm{B}(1)-\mathrm{O}(7)-\mathrm{B}(5)$	$120.0(1)$	$\mathrm{O}(1)-\mathrm{B}(5)-\mathrm{O}(5)$	$108.5(1)$
$\mathrm{B}(5)-\mathrm{O}(1)-\mathrm{B}(2)$	$120.3(1)$	$\mathrm{O}(4)-\mathrm{B}(5)-\mathrm{O}(7)$	$109.8(1)$
$\mathrm{B}(3)-\mathrm{O}(3)-\mathrm{B}(1)$	$118.4(1)$	a	$109.2(1)$
$\mathrm{B}(4)-\mathrm{O}(4)-\mathrm{B}(5)$	$124.8(1)$	x	
$\mathrm{~B}(5)-\mathrm{O}(5)-\mathrm{B}(3)$	$123.7(1)$	x	$\frac{1}{2}+z$
$\mathrm{~B}(4)-\mathrm{O}(8)-\mathrm{B}(2)$	$122.2(1)$		$-\frac{1}{2}-y$

Fig. 5. $\left[\mathrm{B}_{5} \mathrm{O}_{6} \mathrm{O}_{4 / 2}(\mathrm{OH})_{2}\right]^{3-}$ unit in $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8}(\mathrm{OH})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ [26].

5. X-ray powder diffraction of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$

A powder diffraction pattern of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$ was recorded at 210 K with a Guinier-Simon camera using $\mathrm{Cu} \mathrm{K} \alpha$ radiation ($\lambda=1.54056 \AA$) with α quartz as an internal standard. The evaluation of the pattern is shown in

TABLE 7
X-ray powder diffraction data of $\mathrm{Na}_{3} \mathrm{~B}_{5} \mathrm{O}_{8} \mathrm{~S}$

$h k l$	Calculated			Observed		
	2θ (deg)	$d(\AA)$	I (\%)	$2 \theta(\mathrm{deg})$	$d(\AA)$	I (\%)
100	7.77	11.36	50	7.78	11.35	50
011	16.33	5.42	11	16.35	5.42	10
$11-1$	17.87	4.96	28	17.88	4.97	40
111	18.35	4.83	13	18.35	4.83	10
300	23.47	3.79	79	23.47	3.79	80
212	27.42	3.25	63	27.45	3.25	80
31-1	28.25	3.16	15	28.25	3.16	10
311	29.19	3.05	14	29.20	3.02	10
302	29.60	3.02	41	29.65	3.01	50
220	32.68	2.74	100	32.68	2.74	100
004	32.81	2.73	28	32.80	2.73	40
312	32.95	2.72	18	32.95	2.72	10
$10-4$	33.23	2.69	47	33.25	2.69	50
213	33.37	2.68	15	33.37	2.68	20
$40-2$	34.55	2.59	21	34.55	2.59	20
31-3	36.00	2.49	24	36.00	2.49	30
$12-3$	38.42	2.34	11	38.42	2.34	10
500	39.62	2.27	20	39.62	2.27	10
214	40.29	2.24	25	40.30	2.24	20
51-1	42.57	2.12	24	42.58	2.12	20
$42-1$	43.39	2.08	17	43.39	2.08	20
024	44.04	2.05	14	44.03	2.05	10
11 -5	44.14	2.05	13	44.15	2.05	10
$44-2$	45.41	2.00	13	45.40	2.00	10
23-1	46.97	1.93	10	46.98	1.93	10
404	47.76	1.90	21	47.75	1.90	20
224	47.81	1.90	20	47.80	1.90	20
600	48.00	1.89	16	48.00	1.89	20
$32-4$	49.31	1.85	45	49.30	1.85	50
324	51.66	1.77	21	51.65	1.77	20

Table 7 and is compared with the calculated diffraction data from the singlecrystal structure (program LAZY PULVERIX [33]).

Acknowledgment

We wish to thank the Fonds der Chemischen Industrie for generous support of our work.

References

1 B. Krebs, Angew. Chem., 95 (1983) 113; Angew. Chem. Int. Ed. Engl., 22 (1983) 113.
2 B. Krebs and H. Diercks, Acta Crystallogr. A, 31 (1975) 66.

3 H. Diercks and B. Krebs, Angew. Chem., 89 (1977) 327; Angew. Chem. Int. Ed. Engl., 16 (1977) 313.
4 P. zum Hebel, H. Diercks and B. Krebs, Z. Kristallogr., 185 (1988) 401.
5 P. Hagenmuller and F. Chopin, C.R. Acad. Sci. Paris, 255 (1962) 2259.
6 H. Y. Chen, B. R. Conard and P. W. Gilles, Inorg. Chem., 9 (1970) 1776.
7 H.-U. Hürter, Doctoral Thesis, Münster, 1981.
8 B. Krebs and H.-U. Hürter, Acta Crystallogr. A, 37 (1981) C-163.
9 B. Krebs and H.-U. Hürter, Angew. Chem., 92 (1980) 479; Angew. Chem. Int. Ed. Engl., 19 (1980) 481.
10 B. Krebs and W. Hamann, J. Less-Common Met., 137 (1988) 143.
11 C. Püttmann, P. zum Hebel, A. Hammerschmidt and B. Krebs, Acta Crystallogr. A, 46 (1990) C-279.

12 P. Hagenmuller, F. Chopin and B. Castagna, C.R. Acad. Sci. Paris, 262 (1966) 418.
13 A. Hardy, Bull. Soc. Fr. Mineral. Cristallogr., 91 (1968) 111.
14 H. Diercks and B. Krebs, Acta Crystallogr. C, in press.
15 B. Krebs, P. zum Hebel and H. Diercks, in preparation.
16 P. Hagenmuller and F. Chopin, C.R. Acad. Sci. Paris, 256 (1963) 5578.
17 F. Chopin and G. Turrell, J. Mol. Struct., 3 (1969) 57.
18 C. Püttmann and B. Krebs, Phosphorus, Sulfur and Silicon, 65 (1992) 1.
19 B. Krebs and W. Hamann, Acta Crystallogr. A, 40 (1984) C-217.
20 B. Krebs and W. Hamann, Z. Kristallogr., 162 (1983) 149.
21 C. Püttmann and B. Krebs, Eur. J. Solid State Inorg. Chem., in press.
22 F. Chopin and B. Capdepuy, Bull. Soc. Chim. Fr., 1 (1970) 505.
23 P. zum Hebel, B. Krebs, M. Grüne and W. Müller-Warmuth, Solid State Ionics, 43 (1990) 133.

24 R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B, 25 (1969) 925.
25 L. Pauling, Die Natur der Chemischen Bindung, VCH, Weinheim, 1968.
26 S. Menchetti and C. Sabelli, Acta Crystallogr. B, 33 (1977) 3730.
27 S. Ghose, Cheng'ng Wan and J. R. Clark, Am. Mineral., 63 (1978) 160.
28 J. R. Clark and D. E. Appleman, Science, 145 (1964) 1295.
29 Kh. M. Kurbanov and I. M. Rumanova, Dokl. Akad. Nauk SSSR, 152 (1963) 1100.
30 I. M. Rumanova, Kh. M. Kurbanov and N. V. Belov, Sov. Phys. - Crystallogr., 10 (1965) 513.

31 H. Burzlaff, Neues Jb. Miner. Mh., 8 (1967) 157.
32 S. Ghose, Cheng'ng Wan and H. H. Ulbrich, Acta Crystallogr. B, 32 (1976) 824.
33 K. Yvon, W. Jeitschko and E. Parthé, J. Appl. Crystallogr. 10 (1977) 73.

[^0]: *Dedicated to Professor W. Bronger on the occasion of his 60th birthday.

